MAP Complexity Results and Approximation Methods

James D. Park
Computer Science Department
University of California
Los Angeles, CA 90095
jd@cs.ucla.edu

Abstract

MAP is the problem of finding a most prob-
able instantiation of a set of variables in
a Bayesian network, given some evidence.
MAP appears to be a significantly harder
problem than the related problems of com-
puting the probability of evidence (Pr), or
MPE (a special case of MAP). Because of the
complexity of MAP, and the lack of viable al-
gorithms to approximate it, MAP computa-
tions are generally avoided by practitioners.

This paper investigates the complexity of
MAP. We show that MAP is complete for
NPFP. We also provide negative complex-
ity results for elimination based algorithms.
It turns out that MAP remains hard even
when MPE, and Pr are easy. We show that
MAP is NP-complete when the networks are
restricted to polytrees, and even then can not
be effectively approximated.

Because there is no approximation algo-
rithm with guaranteed results, we investigate
best effort approximations. We introduce a
generic MAP approximation framework. As
one instantiation of it, we implement local
search coupled with belief propagation (BP)
to approximate MAP. We show how to ex-
tract approximate evidence retraction infor-
mation from belief propagation which allows
us to perform efficient local search. This al-
lows MAP approximation even on networks
that are too complex to even exactly solve
the easier problems of computing Pr or MPE.
Experimental results indicate that using BP
and local search provides accurate MAP es-
timates in many cases.

1 Introduction

The task of computing the Maximum a Posteriori hy-
pothesis (MAP) is to find the most likely configuration
of a set of variables (which we will call the MAP vari-
ables) given (partial) evidence about the complement
of that set (the non-MAP variables).

One specialization of MAP which has received a lot of
attention is the Most Probable Explanation (MPE).
MPE is the problem of finding the most likely config-
uration of a set of variables given an evidence instan-
tiation for the complement of that set. The primary
reason for this attention is that MPE seems to be a
much simpler problem than its MAP generalization.

Unfortunately, MPE is not always suitable for the task
of providing explanations. For example, in system di-
agnosis, where the health of each component is rep-
resented as a variable, one is interested in finding the
most likely configuration of health variables only — the
likely input and output values of each component are
not of interest. Additionally, the projection of an MPE
solution on these health variables is usually not a most
likely configuration. Nor is the configuration obtained
by choosing the most likely state of each variable sep-
arately.

MAP turns out to be a very difficult problem even
when compared to MPE or computing the probabil-
ity of evidence (Pr). In section 2 we present some
complexity results for MAP that indicate that neither
exact nor approximate solutions can be guaranteed,
even under very restricted circumstances. Still, MAP
remains an important problem, and one we would like
to be able to generate solutions for. Our approach is
to provide best effort approximation methods. In sec-
tion 3 we discuss a general approach to approximating
MAP and provide one instantiation of that approach
that is based on belief propagation and local search,
which allows MAP approximations even when exact
MPE and Pr computations are not feasible.

2 MAP Complexity

In this section, we begin by reviewing some complex-
ity theory classes and terminology that pertain to the
complexity of MAP. Next, we examine the complex-
ity of MAP in the general case. We then examine the
complexity of current state of the art MAP algorithms
based on variable elimination. We conclude the com-
plexity section by examining the complexity of MAP
on polytrees.

2.1 Complexity Review

We assume that the reader is familiar with the ba-
sic notions of complexity theory like the hardness and
completeness of languages, as well as the complexity
class NP. For an in-depth introduction to complexity
theory see [13].

In addition to NP, we will also be interested in the class
PP and a derivative of it. Informally, PP is the class
which contains the languages for which there exists a
nondeterministic Turing machine where the majority
of the nondeteriministic computations accept if and
only if the string is in the language. PP can be thought
of as the decision version of the functional class #P.
As such, PP is a powerful language. In fact NP C
PP, and the inequality is strict unless the polynomial
hierarchy collapses to the second level.!

Another idea we will need is the concept of an oracle.
Sometimes it is useful to ask questions about what
could be done if an operation were free. In complexity
theory this is modeled as a Turing machine with an
oracle. An oracle Turing machine is a Turing machine
with the additional capability of being able to obtain
answers to certain queries in a single time step. For
example, we may want to designate the class of lan-
guages that could be recognized in nondeterminstic
polynomial time if any PP query could be answered
for free. The class of languages would be NP with a
PP oracle, which is denoted NPFF.

In this paper, we will be dealing with the decision
versions of the problems. For example, the decision
problem for MAP is: Given a Bayesian Network with
rational parameters, a subset of its variables X, ev-
idence e (which consists of a partial instantiation of
the non-MAP variables) and a rational threshold k, is
there an instantiation x of X such that Pr(x,e) > k?
The decision problems for MPE and Pr are defined
similarly.

'This is a direct result of Toda’s theorem [20]. From
Toda’s theorem PP contains the entire polynomial hier-
archy (PH), so if NP = PP, then PH C P'F = PP,

2.2 MAP Complexity for the General Case

Computing MPE, Pr, and MAP are all NP-Hard, but
there still appears to be significant differences in their
complexity. MPE is basically a combinatorial opti-
mization problem. Computing the probability of a
complete instantiation is trivial, so the only real dif-
ficulty is determining which instantiation to choose.
MPE is NP-complete.?2 Pr is a completely different
type of problem, characterized by counting instead of
optimization and is PP-complete [7] (notice that this
is the complexity of the decision version, not the func-
tional version which is #P-complete [17]). MAP com-
bines both the counting and optimization paradigms.
In order to compute the probability of a particular
instantiation, an inference query is needed. Optimiza-
tion is also required, in order to be able to decide be-
tween the many possible instantiations. This is re-
flected in the complexity of MAP.

Theorem 1 MAP is NPF -complete.

Proof: Membership in NPP? is immediate. Given any
instantiation x of the MAP variables, we can verify if it
is a solution by querying the PP oracle if Pr(x,e) > k.

To show hardness, we reduce E-MAJSAT [10] (the
canonical SAT oriented complete problem for NPFF)
to MAP. E-MAJSAT is defined as follows: Given a
Boolean formula ¢ over n variables x1, ..., x,, and an
integer k, 1 < k < n, is there an assignment to the first
k wvariables such that the majority of the assignments
to the remaining n — k variables satisfy ¢? First, we
create a Bayesian Network that models the Boolean
expression. For each variable in the expression, we cre-
ate an analogous variable in the network with uniform
prior probability. Then, for each logical operator, we
create a variable whose parents are the variables corre-
sponding to its operands, and whose CPT encodes the
truth table for that operator (see Figure 1 for a simple
example). Let vg be the network variable correspond-
ing to the top level operand. For a particular instan-
tiation x of variables 1, ..., zx, we let e = {vy = T'}.
Then,

Pr(x,e) = Z

Th41sTn

Pr(x,2p+1,--Zn,v¢ =T

2The NP-hardness of the functional version of MPE was
shown in [19]. We are not aware of any published proof
of the completeness of the decision problem, so we sketch
it here. Membership is immediate, since the score for a
purported solution can be tested in linear time. Hardness
is based on using the standard Bayesian network simula-
tion of a Boolean expression (c.f. Theorem 1) to solve
SAT. MPE(vy = T') > 0 if and only if the expression is
satisfiable.

3This result was stated without proof in [9]. The author
attributed the result [8] to an unpublished proof by Mark
Peot.

Figure 1: The Bayesian network produced using the
reduction in Theorem 1 for Boolean formula —(z; V
Z2) A 3.

= (#satisfied)/2"

znfk

Since there are instantiations of

k41, ---, T, We have

possible

Pr(x,e) = (fraction satisfied) /2"

So the MAP query over variables z1, ..., z; with evi-
dence vy = T and threshold 1/2%+! is true if and only
if the E-MAJSAT query is also true. O

This class has also been shown to be important in
probabilistic planning problems [10].

NPFF is a powerful class, even compared to NP and
PP. They are related by NP C PP C NPPP | where the
equalities are considered very unlikely. In fact, NPF¥
contains the entire polynomial hierarchy [20].

Additionally, because MAP generalized Pr, MAP in-
herits the wild nonapproximability of Pr shown in [17].

Corollarl)i 2 For any € > 0, approrimating MAP
within 2™~ is NP-hard where n is the number of vari-
ables in the network.

So, if P # NP then no polynomial time algorithm ex-
ists for approximating MAP that can guarantee subex-
ponential relative error.

2.3 Results for Elimination Algorithms

Solution to the general MAP problem seems out of
reach, but what about for “easier” networks? State
of the art exact inference algorithms (variable elimi-
nation [4], join trees [6, 18, 5], recursive conditioning
[2]) can compute Pr(e) and MPE in space and time
complexity that is exponential only in the width of the
elimination order used. This allows many networks to
be solved using reasonable resources even though the
general problems are very difficult. Similarly, state of
the art MAP algorithms can solve MAP with time and
space complexity that is exponential only in width of
the elimination order. Unfortunately, for MAP, not
all orders can be used. In practice the order is gener-
ally generated by restricting the elimination order to

eliminate all of the MAP variables last. This tends to
produce elimination orders with widths much larger
than those available for Pr and MPE, often placing
exact MAP solutions out of reach [15]. We now con-
sider the question of whether there are less stringent
conditions for valid elimination orders, that may allow
for orders with smaller widths.

Elimination algorithms exploit the fact that summa-
tion commutes with summation, and maximization
commutes with maximization in order to essentially
factor the problem. Given an ordering, elimination al-
gorithms work by stepping through the ordering, col-
lecting the potentials mentioning the current variable,
multiplying them, then replacing them with the po-
tential formed by summing out (or maximizing) the
current variable from the product. This process can
be thought to induce an evaluation tree. The evalu-
ation tree for an order consists of the potentials gen-
erated by performing the variable elimination, where
an edge means that the child was one of the potentials
that were combined to form the parent (see Figure 2
for an example). The width of the elimination order is
the size (measured in the number of variables) of the
largest potential in the evaluation tree.

Because maximization and summation do not com-
mute, not all variable orders generate evaluations that
are valid. That is, trying to perform elimination us-
ing some orders will produce incorrect results. MAP
requires that summation be performed before maxi-
mization. Thus, the criteria that needs to be satis-
fied is that a potential cannot be maximized if it men-
tions any summation variables. An elimination order
is valid (because it generates a valid evaluation tree) if
the induced evaluation tree never maximizes a variable
out of a potential that mentions a summation variable.
The standard way of ensuring a valid order is to elim-
inate all of the summation variables before any of the
maximization variables. Two questions present them-
selves. First, are there valid orderings that interleave
summation and maximization variables? And second,
if so, can they produce widths smaller than those gen-
erated by eliminating all summation variables, then all
maximization variables?

The answer to the first question is yes, there are other
valid elimination orders. To see that, we introduce
the notion of the elimination tree. An elimination or-
der induces an elimination tree which consists of the
variables of the order, where an edge from parent to
child indicates that the potential generated by elimi-
nating the child was combined to form the potential
generated by eliminating the parent. The elimination
tree can be thought of as a high level summary of
the evaluation tree. Figure 2 shows a sample network
and elimination order, with its associated evaluation

(&) ﬁ% (@

(8c) A
© ®

Pr(A) Pr(B|A) Pr(C|A) Pr(D|BC) Pr(E|C) Q
b.

Figure 2: A Bayesian network (a), an evaluation tree (b), and an elimination tree (c) corresponding to the

elimination order ABEDC.

tree and elimination tree. The elimination tree de-
fines a partial ordering of the variables where a child
in the tree must be eliminated before the parent. Any
elimination order that obeys the partial order induces
the same evaluation tree. Thus, if an order is valid,
all other orders that share the same elimination tree
are also valid. Additionally, since they share the same
evaluation tree, they all have the same width. Figure 2
shows the tree induced by using the order AEBDC
(which eliminates summation variables first) to solve
MAP(C,D). An equivalent order that interleaves sum-
mation and maximization variables is ABDEC. Typi-
cally, there are many valid interleaved elimination or-
ders. Unfortunately, allowing interleaved orders does
not help.

Theorem 3 For any wvalid MAP elimination order,
there is an ordering of the same width in which all
of the mazximization variables are eliminated last.

Proof: Consider the elimination tree induced by any
valid elimination order. No summation variable is the
parent of any maximization variable. This can be
seen by considering any maximization variable. When
the corresponding potential was maximized, it had no
summation variables, and so the resulting potential
also has no summation variables. Hence, any parent of
a maximization variable must also be a maximization
variable. Since no summation variable is a parent of a
maximization variable, all summation variables can be
eliminated first in any order consistent with the par-
tial order defined by the elimination tree. Then, all
the maximization variables can be eliminated, again
obeying the partial ordering defined by the elimina-
tion tree. Because the produced order has the same
elimination tree as the original order, they have the
same width. O

2.4 MAP on Polytrees

Theorem 3 has significant complexity implications for
elimination algorithms even on polytrees.

Theorem 4 Elimination algorithms require exponen-
tial resources to perform MAP, even on some polytrees.

Proof: Consider computing MAP(X;..X,,,{S, =T})
for a network consisting of variables
X1, .0y X0, S0, .-y Sy with topology as shown in Fig-
ure 3. By Theorem 3, there is no order better than
eliminating all of the non-MAP variables. But, after
the non-MAP variables are eliminated, all of the MAP
variables appear in a single potential. Thus the width
is linear in the number of variables, and the algorithm
requires exponential resources. O

Which variables are maximized makes a crucial
difference in the complexity of MAP computa-
tions. For example, the problem of maximizing over
X1.-Xp/2,S80---Sp /2 instead of X;...X,, can be solved
in linear time.

It turns out that finding a good general algorithm for
MAP on polytrees is unlikely.

Theorem 5 MAP is NP-Complete when restricted to
polytrees.

Proof: Membership is immediate. Given a purported
solution instantiation x, we can compute Pr(x,e) in
linear time and test it against the bound. To show
hardness, we reduce MAXSAT to MAP on a polytree.
A similar reduction was used in [10] and [14]. The
MAXSAT problem is defined as follows: Given a set
of clauses C1,...,Cy, over variables x1,...,2, and an
integer bound k, is there an assignment of the vari-
ables, such that more than k clauses are satisfied. The
idea behind the reduction is to model randomly se-
lecting a clause, then successively checking whether
the instantiation of each variable satisfies the selected
clause. The clause selector variable Sy with possible
values 1,2,...,m has a uniform prior. Each proposi-
tional variable z; induces two network variables X; and
S;. X; represents the value of z;, and has a uniform
prior. S; represents whether any of zi, ..., z; satisfy
the selected clause. S; = 0 indicates that the selected
clause was satisfied by one of z1,...,2;. S; = ¢ >0

Figure 3: The network used in the reduction of Theo-
rem 9.

indicates that the selected clause C, was not satisfied
by %1,...,x;. The parents of S; are x; and S;_; (the
topology is shown in Figure 3). The CPT for S;, for
i > 1 is defined as

[y

if Si = Sifl =0

if Si =0 and Sifl Zj, and
X satisfies C}

if §; = S;-1 = j and X; does
not satisfy Cj

0 otherwise

—_

Pr(S;|X;,Si-1) =

—

In words, if the selected clause was not satisfied by
the first 4 — 1 variables (S;_1 # 0), and the z; satisfies
it, then S; becomes satisfied (S; = 0) otherwise, S; =
S;—1- Then for a particular instantiation ¢ of Sy and x
of X1,...,Xn, Pr(c,x,S, =0) =1/(m2") if x satisfies
clause C., 0 otherwise. Thus MAP over X;,..., X,
with evidence S,, = 0 and bound k/(m2") solves the
MAX-SAT problem as well. O

Additionally, because MAX-SAT is
complete, we have the following corollary:

MAXSNP-

Corollary 6 MAP on polytrees is MAXSNP-hard.

This means that there is no polynomial time approxi-
mation scheme for MAP on polytrees unless P = NP.

3 Approximating MAP

The complexity of MAP places exact solution out of
reach in all but the simplest cases. Good approxi-
mations can not be guaranteed either. Still, we want
some method to generate at least approximate solu-
tions to the problem. Typically practitioners resort to
computing individual posteriors, or computing MPE,
and projecting the solution onto the MAP variables.
Unfortunately both methods in general produce rel-
atively poor approximations to MAP. Also, when the
network is complex, both methods are too complicated
to compute exactly.

We propose a general framework for approximating
MAP. MAP consists of two problems that are hard
in general — optimization and inference. A MAP ap-
proximation algorithm can be produced by substitut-
ing approximate versions of either the optimization

or inference component (or both). The optimization
problem is defined over the MAP variables, and the
score for each solution candidate instantiation s of the
MAP variables is the (possibly approximate) probabil-
ity Pr(s,e) produced by the inference method. This
allows solutions tailored to the specific problem. For
networks whose treewidth is manageable, but contains
a hard optimization component (e.g. the polytree ex-
amples discussed previously), exact structural infer-
ence can be used, coupled with an approximate opti-
mization algorithm. Alternatively, if the optimization
problem is easy (e.g. there are few MAP variables)
but the network isn’t amenable to exact inference, an
exact optimization method could be coupled with an
approximate inference routine. If both components are
hard, both the optimization and inference components
need to be approximated.

The only previous algorithms for approximating MAP
of which we are aware are instantiations of this frame-
work. They both use an exact probability engine, but
an approximate optimization engine [3, 15], and so are
feasible for networks amenable to exact inference.

We now present a new MAP approximation algorithm
which uses local search to approximate the optimiza-
tion component, and belief propagation to approxi-
mate the inference component. This extends the realm
of problems where MAP approximations can be effec-
tively generated to problems that can be approximated
well by belief propagation.

Belief propagation has a number of qualities that make
it a good candidate to use as the approximate prob-
ability engine for MAP approximation. Experimental
results have shown impressive performance in a va-
riety of domains. It has effective methods for com-
puting MPE and posteriors of individual nodes, which
are both powerful initialization methods for the local
search. Recent work [21] has demonstrated how to
use BP to estimate Pr(e), which is the primary re-
quirement for using it as a subroutine to MAP. Also,
approximate retracted marginals Pr(zle — X) can be
computed locally for each variable. The notation e— X
represents the instantiation formed by removing the
assignment of X from e. The ability to approximate
retracted marginals provides a linear speed up for the
search.

3.1 Belief Propagation Review

Belief propagation was introduced as an exact infer-
ence method on polytrees [16]. It is a message passing
algorithm in which each node in the network sends a
message to its neighbors. These messages, along with
the CPTs and the evidence can be used to compute
posterior marginals for all of the variables. In net-

© 0 90 0 0 00 09
O R, N WA OO N © © R
.

0 0.10.2030.405060.708¢09 1

Figure 4: A scatter plot of the exact versus approx-
imate retracted values of 30 variables of the Barley
network.

works with loops, belief propagation is no longer guar-
anteed to be exact and successive iterations generally
produce different results, so belief propagation is typ-
ically run until the message values converge. This has
been shown to provide very good approximations for a
variety of networks [11, 12], and has recently received
a theoretical explanation [22].

Belief propagation works as follows. Each node X,
has an evidence indicator Ax where evidence can be
entered. If the evidence sets X = z, then Ax(z) =1,
and is 0 otherwise. If no evidence is set for X, then
Ax(z) = 1 for all z. After evidence is entered, each
node X sends a message to each of its neighbors. The
message a node X with parents U sends to child Y is
computed as

Mxy =a)_ AxPr(X|U) J] Mzx
U Z4Y

where Z ranges over the neighbors of X and « is a
normalizing constant. Similarly, the message X sends
to a parent U is

Mxy=a > AxPr(X|U) [Mzx.
XU—{U} Z#£U

Message passing continues until the message values
converge. The posterior of X is then approximated
as

Pr'(Xle) = a Y Ax Pr(X|U)] Mzx.
U zZ

4We use potential notation more common to join trees
than the standard descriptions of belief propagation be-
cause we believe the many indices required in standard
presentations mask the simplicity of the algorithm.

3.2 Description of the Algorithm

We use BP for the inference algorithm, and stochastic
hill climbing as the optimization routine. The stochas-
tic hill climbing method performs local search in the
space of MAP variable instantiations, looking for the
optimal instantiation. It works by either greedily mov-
ing to the best neighbor, or stochastically selecting
a neighbor, where the choice is made randomly with
some fixed probability. In this algorithm, one instanti-
ation of the MAP variables is a neighbor of another if
they differ only in the assignment of a single variable.

The score for a particular instantiation can be com-
puted using the method for approximating the proba-
bility of evidence given in [21]. Using this method to
select the best neighbor to move to requires running
belief propagation separately on each neighbor in or-
der to compute its score. We can do better than that
by running belief propagation on the current state s,
and using the messages to approximate the change in
score that moving to a neighboring state =, s— X would
produce. The improvement from the current state s to
the neighboring state z,s — X is just the ratio of their
probabilities

Pr'(z,s — X
improvement(z,s — X) = %'

By dividing both numerator and denominator by
Pr'(s — X, e), we get

Pr'(z|s — X, e)
improvement(z,s — X) = ————— "~
P (=,) Pr'(zs|s — X, e)
where xs is the value that X takes on in s. So, given
the ability to approximate retracted conditional proba-
bilities locally, we can compute the best neighbor after
a single belief propagation.

Belief propagation is able to approximate retracted
values for each variable efficiently based on the mes-
sages passed to that variable. For polytrees, the in-
coming messages are independent of the value of the
local CPT or any evidence entered. Leaving the evi-
dence out of the product yields

Pr(Xle - X)=a) Pr(X[U) [] Mzx.
U Z

In multiply connected networks the incoming messages
are not necessarily independent of the evidence or the
local CPT, but as is done with other BP methods,
we ignore that and hope that it is nearly independent.
Empirically, the approximation seems to be quite accu-
rate. Figure 4 shows a representative example, com-
paring the correspondence between the approximate
and exact retracted probabilities for 30 variables in
the Barley network. The x axis corresponds to the

true retracted probability, and the y axis to the ap-
proximation produced using belief propagation.

Using retracted conditional probabilities to compute
the improvement provides a linear speedup as com-
pared to using belief propagation to compute the score
for each neighbor separately. Figure 5 provides pseu-
docode for the algorithm.

3.3 Initializing the Search

The performance of local search methods such as
hill climbing often depend crucially on the initializa-
tion. We investigate two methods previously shown
to be successful when using exact inference. The first
method is based on MPE. It consists of computing
the MPE assignment (which we approximate using
the standard BP approximation method) then creat-
ing the MAP assignment by setting each MAP vari-
able to the value it takes on in the MPE assignment.
The other method creates the instantiation by setting
each MAP wvariable to the instance that maximizes
Pr'(X|e), which we will call ML.

3.4 Experimental Results

We tested the algorithm on both synthetic and two
real world networks from the Bayesian network repos-
itory [1]. For the first experiment, we generated 100
synthetic networks with 100 variables each using the
method described in [15] with bias parameter 0.25
and width parameter of 13. We generated the net-
works to be small enough that we could often com-
pute the exact MAP value, but large enough to make
the problem challenging. We chose the MAP variables
as the roots (typically between 20 and 25 variables),
and the evidence values were chosen randomly from
10 of the leaves. We computed the true MAP for the
ones which memory constraints (512 MB of RAM) al-
lowed. We computed the true probability of the in-
stantiations produced by the two initialization meth-
ods. We also computed the true probability of the
instantiations returned by pure hill climbing (i.e. only
greedy steps were taken), and stochastic hill climbing
(using py = .3 and 100 iterations) for both initializa-
tion methods. Of the 100 networks, we were able to
compute the exact MAP in 59 of them. Table 1 shows
the number exactly solved for each method, as well as
the worst instantiation produced, measured as the ra-
tio of the probabilities of the found instantiation to the
true MAP instantiation. All of the hill climbing meth-
ods improved significantly over their initializations in
general, although for 2 of the networks, the hill climb-
ing versions were slightly worse than the initial value
(the worst was a ratio of .835), because of a slight mis-
match in the true vs. approximate probabilities. Over

solved exactly worst
MPE 9 .015
MPE-Hill 41 .06
MPE-SHill | 43 21
ML 31 .34
ML-Hill 38 .46
ML-SHill 42 .72

Table 1: Solution quality for the random networks.
Shows the number solved exactly of the 59 for which we
could compute the true MAP value. Worst is the ratio
of the probabilities of the found instantiation to the
true MAP instantiation. Each hill climbing method
improved significantly over the initializations.

min median mean max
MPE-Hill 1.0 8.4 1.3x101! 3.1x10'?
MPE-SHill | 1.0 8.4 1.3x10'* 3.1x10'2
ML-Hill 1.0x10* 3.6x107 3.4x10'® 8.4x10'°
ML-SHill 7.7x10° 3.6x107 3.4x10'° 8.4x10'®

Table 2: The statistics on the improvement over just
the initialization method for each search method on
the data set generated from the Barley network. Im-
provement is measured as the ratio of the found prob-
ability to the probability of the initialization instanti-
ation.

all, the stochastic hill climbing routines outperformed
the other methods.

In the second experiment, we generated 25 random
MAP problems for the Barley network, each with 25
randomly chosen MAP variables, and 10 randomly
chosen evidence assignments. We use the same pa-
rameters as in the previous experiment. The problems
were to hard to compute the exact MAP, so we report
only on the relative improvements over the initializa-
tion methods. Table 2 summarizes the results. Again,
the stochastic hill climbing methods were able to sig-
nificantly improve the quality of the instantiations cre-
ated.

In the third experiment, we performed the same type
of experiment on the Pigs network. None of the search
methods were able to improve on ML initialization.
We concluded that the problem was too easy. Pigs
has over 400 variables, and it seemed that the evidence
didn’t force enough dependence among the variables.
We ran another experiment with Pigs, this time using
200 MAP variables and 20 evidence values to make
it more difficult. Table 3 summarizes the results.
Again, the stochastic methods were able to improve
significantly over the initialization methods.

Spest = S
Repeat many times:

if Pr'(s,e) > Pr'(spest, €) then
Spest = S

With probability ps do

otherwise do

else

return Spest

Initialize current state s to some instantiation of S.

Given: Bayesian network A/, evidence e, and MAP variables S.
Compute: An instantiation s which (approximately) maximizes Pr(s, e).

Perform belief propagation on A with evidence s, e.

Randomly modify one of the variable assignments in s.
Compute improvement(x,s — X) = Pr’(x|s — X, e)/ Pr'(xs|s — X, e) for each neighbor z,s — X.
if improvement(x,s — X) < 1 for all neighbors

Randomly modify one of the variable assignments in s.

Set s to the neighbor z,s — X that has the highest improvement.

Figure 5: An algorithm to approximate MAP using stochastic hill climbing and belief propagation

min median mean max
MPE-Hill | 1.0 1.7x10° 1.5x10° 3.3x10°%
MPE-SHill | 1.0 2.5x10° 4.5x10'! 1.1x10!3
ML-Hill 13.0 2.0x10® 3.3x10° 4.5x10°
ML-SHill 13.0 1.2x10* 8.2x10° 8.2x10°

Table 3: The statistics on the improvement over just
the initialization method alone for each search method
on the data set generated from the Pigs network. Im-
provement is measured as the ratio of the found prob-
ability to the initialization probability.

4 Conclusion

MAP is a computationally very hard problem which is
not in general amenable to exact solution even for very
restricted classes (ex. polytrees). Even approxima-
tion is difficult. Still, we can produce approximations
that are much better than those currently used by
practitioners (MPE, ML) through using approximate
optimization and inference methods. We showed one
method based on belief propagation and stochastic hill
climbing that produced significant improvements over
those methods, extending the realm for which MAP
can be approximated to networks that work well with
belief propagation.

Acknowledgement

This work has been partially supported by MURI
grant N00014-00-1-0617

References

[1] Bayesian network repository.

[3]

[4]

[9]

[10]

www.cs.huji.ac.il/labs/compbio /Repository.

A. Darwiche. Recursive conditioning. Artificial
Intelligence, 126(1-2):5-41, February, 2001.

L. de Campos, J. Gamez, and S. Moral. Partial
abductive inference in Bayesian belief networks
using a genetic algorithm. Pattern Recognition
Letters, 20(11-13):1211-1217, 1999.

R. Dechter. Bucket elimination: A unifying
framework for probabilistic inference. In 12th
Conference on Uncertainty in Artificial Intelli-
gence, pages 211-219, 1996.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen.
Bayesian updating in recursive graphical models
by local computation. Computational Statistics
Quarterly, 4:269-282, 1990.

S. L. Lauritzen and D. J. Spiegelhalter. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-

tems. Journal of Royal Statistics Society, Series
B, 50(2):157-224, 1988.

M. L. Litmman, S. M. Majercik, and T. Pitassi.
Stochastic boolean satisfiability. Journal of Au-
tomated Reasoning, 27(3):251-296, 2001.

M. Littman. Personal comunication.

M. Littman. Initial experiments in stochastic sat-
isfiability. In Sixteenth National Conference on
Artificial Intelligence, pages 667672, 1999.

M. Littman, J. Goldsmith, and M. Mundhenk.
The computational complexity of probabilistic
planning. Journal of Artificial Intelligence Re-
search, 9:1-36, 1998.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. J. McEliece, E. Rodemich, and J. F. Cheng.
The turbo decision algorithm. In 33rd Aller-
ton Conference on Communications, Control and
Computing, pages 366-379, 1995.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy
belief propagation for approximate inference: an
emperical study. In Proceedings of Uncertainty in
AI 1999.

C. Papadimitriou. Computational Complexity.
Addison-Wesley, Reading, MA, 1994.

C. Papadimitriou and J. Tsitsiklis. The complex-
ity of Markov decision processes. Mathematics of
Operations Research, 12(3):441-450, 1987.

J. D. Park and A. Darwiche. Approximating map
using local search. In 17th Conference on Un-
certainty in Artificial Intelligence, pages 403—410,
2001.

J. Pearl. Probabalistic Reasoning In Intelligent
Systems. Morgan Kaufmann, 1998.

D. Roth. On the hardness of approximate reason-
ing. Artificial Intelligence, 82(1-2):273-302, 1996.

P. Shenoy and G. Shafer. Propagating belief
functions with local computations. IEEE Ezpert,
1(3):43-52, 1986.

S. E. Shimony. Finding maps for belief networks
is NP-hard. Artificial Intelligence, 68(2):399-410,
1994.

S. Toda. PP is as hard as the polynomial-time
hierarchy. SIAM Journal of Computing, 20:865—
877, 1991.

Y. Weiss. Approximate inference using belief
propagation. UAI tutorial, 2001.

J. Yedidia, W. Freeman, and Y. Weiss. Gener-
alized belief propagation. In NIPS, volume 13,
2000.

